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Abstract

TRIAD is a well known simple algorithmthatgeneratesthe aRitudematrixbetween two coordinate

systemswhen the componentsof two abstractvectorsare givenin the two systems.TRIAD, however,is

sensitiveto the order at which the algorithmhandles the vectors,such thatthe resultingattitude

matrixisinfluencedmore by thevectorprocccssedfirst.

In thiswork we presenta new algorithm,which we callOptimized TRIAD, thatblends,in a specified

manner,thetwo ma_ces generatedby TRIAD when processingone vectorfirst,and thenwhen processing

theothervectorfirstOn the average,OptimizedTRIAD yieldsa matrixwhich isbetterthaneitherone
of the two ma_ces in that it is the closestto the correctmatrix.This resultis demonstrated

throughsimulation.

L BACKGROUND

When the components of two abstractvectorsare given in two differentcoordinatesystems,it is

possibleto fred the orientationdifferencebetween the two systems.In p_._ticular,we can easilyfind
the transformationmatrixfrom one coordinatesystem to the other.TRIAD is an algorithmthatdoes

justthat.The processoffindingthe matrixusingTRIAD isasfollows.Let w I and w2 denotethecolumn

matriceswhose elementsare,respectively,the componentsof the two abstractvectorswhen resolvedin

body coordinates,and letvI and v2 denote,respectively,the two column matriceswhose elementsare

the components of the abstractvectorswhen resolvedin the other,usuallyreference,system.The

algorithmcallsforthecomputationof thefollowingcolumn matricesinbody coordinates:

rl=w/lwlI (1.a)

r2ffi(rl×w2)/Ir1×w2[ (1.b)

r3=rtxr2 (l.c)
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and the following corresponding column matrices in the reference system:

sl=v/Ivll (2.a)

s2= (slxv2)/ISlx v2l (2.b)

s3= six s2 (2.c)

Then the attitudematrixthattransformsfrom body to the referencecoordinate systemis computed as

follows:

A=r.sT+r 2.s2T+ r3.s_ (3)

where T denotes the transpose.

Following the process indicated in (1) and (2), we realize that the vector which is designated as
first, is normalized, but other than that, remains intact, whereas the other vector serves as a means
to define the second vector in the triad pair which determines the attitude. There is, therefore, an
uneven consideration of the two vectors where the first is given a preference in the determination of

A. We say that the frost vector serves as an anchor in the computation of the transformation matrix. It
is, indeed, a good engineering practice to use the vector measured by the most accurate device as the
anchor vector. For example, it is very logical to use the vector measured by a star tracker as anchor
when the other vector is measured by magnetometers. One may wonder though whether this is the best one
can do. We maintain that we can do better, and propose a TRIAD-based algorithm which yields better

results. This algorithm, which we name Optimized TRIAD, is introduced next.

IL THE OPTIMIZED TRIAD

The accuracy of each vector-measuring device is quantified by the standard deviation of its error.
Accordingly, the vector measured by a star tracker is assigned a standard deviation smaller than that

assignedto a magnetometer,for example.Borrowingthisnotion,we assigna standarddeviationm the

TRIAD-computed attitude matrix that corresponds to the standard deviation of the anchor vector used in

computing the matrix. Therefore, the attitude matrix A 1, in whose computation vector no. 1 is used as

anchor, is assigned the standard deviation 01, which is the the standard deviation of vector no. 1.

Similarly,ffvectorno. 2 servesas anchor,we denotethe computed attitudematrixby A 2 and assignto

it the standarddeviationo2 which is the standarddeviationof vectorno. 2. Actually,sincethe

computationwhich yieldsthe matrixis nonlinearand is based on both vectors,thereis no simple
linearrelationbetween the standarddeviationof the anchorvectorand thatof the resultingmatrix,

but sincewe are concernedonly with the relativeaccuracyof A I and A2, the expressionof their

accuracy by o I and 0 2 respectively, fits well our final purpose.

It is well known (see the appendix) that when Yl

an unknown scalar, x, and their measurement errors have standard deviations o 1

then _, the linear unbiased minimum variance estimate of x, is given by:
2 2

A 02 Ol

x ffi2------------_yl + 2 2 Y2
O 1 + O 2 O 1 + 02

and Y2 are independent unbiased scalar measurement of

and 0 2, respectively,

(4)
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Following(4), we postulatethatgiven A
l I 2

assignedstandarddeviation02,we can find_,',an estimateof A which isbetterthaneitherA t

when usingthe estimatorof (4);thatis,

with its assigned standard deviation o and A with its

or A2,

2 2
O 0

_)_ 2 1A +- A (5)
2 2 l 2 2 2

O 1 + O 2 O 1 + 0 2

An interesting aspect of this estimator (as well as that of (4)) is the conclusion that adding some of
the worse result to the better, may yield an estimate whose accuracy is greater than that of the
better. Since ._' is a result of the addition of fructions of two orthogonal matrices, _,' is not

necessarily orthogonal, and thus is not a legitimate attitude matrix, unless it is orthogonalized.4
Since _.' is close to being orthogonal, one orthogonalization cycle, as follows , suffices:

(6)_,= 0.5[_'+ (_,-,)T]

It should be noted that the inversion of _' is an easy task since the inverse of a 3x3 matrix can be

computed analytically. It is cumbersome, if not impossible, to prove analytically that ._ is better than

either A 1 or A2; however, we can try to show it empirically. This is done in the next section.

HI. ALGORITHM TESTING

I:IL1 Static Testing

In the static testing we chose some fbced attitude matrix, A , and the components of the unit
true

vectors vI and v 2 (two abstract vectors resolved in the reference system). Then A was used totrue

transform v I and v2 to the body system. To each component of the latter we added white measurement

noise drawn from a random number generator. The added noise was unbiased and had a standard deviation

ol= 0.1 for the noise added to the components of the transform of vI and 02= 0.2 for the noise added to

the components of the transform of v2. The noisy column matrices were designated as w1 and w: TRIAD

was then applied to the four column matrices as described in the preceding section, once when vector

no. 1 was used as anchor and once when the other was used as anchor. This generated the attitude

matrices A t and A2 respectively, which then were used in (5) to generate _' that was used in (6) to

yield the optimized orthogonal matrix ,_. The quaternions corresponding to At rug A 1, A2' and _ were
A

computed and denoted by qtrue' qt' q2' and q respectively. The error quaternion of each transformation

was computed as follows:

8q = q'l® qtrue (7)

A

When q was ql we obtained 8ql , when q was q2 we obtained &12, and when it was q, we obtained 8_. (Note

that with the choice of (7) for computing the erroneous quatemion, we assume that &:! is the
transformation quatemion from the erroneous to the true coordihate system). Finally, we extracted from
each &! the corresponding rotation angle 59. We thus have expressed the error in the computation of the

attitude by a single angular error. That error was the angle by which the computed coordinate system
had to be rotated about the appropriate Euler axis in order to coincide with the true body coordinates.

Since 89 is a random variable, we ran 100 runs (realizations), each for 60 sec and each starting with a
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different seed. Along the Lime axis the computation was performed every second. We then averaged the
100 realizations at each time point and obtained the ensemble average of each error, that is, we

obtained:

1oo

l j_l_Pl ,j(
_| (tk) = 10---'O tk) (8.a)

1oo

8_2(tk) = I_0 j_l_q)2,j(tk )
(8.b)

lO0
I ^

_tk) = z _:ctJ (8.O
j _

j=l

where j denotes the number of the realization, and tk denotes the point in time where TRIAD and Optimal

of _l(tk), _2(tk) and _)(t k) as function of tk is presen_.d inTRIAD performed.The vRluewerc

Fig. (I). We see that _ wu always the smaUest. We also computed the running tlme average of each
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Fig. I: Ensemble Average of the Error Associated with At, A2, and _.

6O

e_.semble average from the beginning of the run to lime tk. In other words, we competed:

8C_l,,v(t k) = +i_=l_)_l(ti )
(9.a)

k

8_2.,v(t k) = +i_=l_2(ti)
(9.b)

34



The value of

l X

_av(tk) -- _ X 8q)(ti) (9.c)

i=l

-- YZ t
S_01,av(tk),&p2,av(tk)and S_0av(k)as functionof tk is presentedin Fig.2. It is
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6O

obvious from Fig. 2 that _, is superior to either A
1

Optimized TRIAD yields better results for the case tested.

or A2. In other words, on the average,the

1TI.1 Dynamic Testing

To check the influenceof changingattitude,we repeated the same runs and computationsas described
I

before,fora changingA. The change in A was due to a the body rotationaboutan axisp definedas
follows:

p 1===_. °

v_ ['b' Jb'kb] (I0)

The rotationrateaboutthisaxiswas I rpm. The graphsof the resultsof thiscase,which correspondto

thosepresentedin Figs.1 and 2, are presentedin Figs.3 and 4 respectively.Since the ideabehind

thisalgorithmis borrowed from linearestimationtheoryof independentunbiasedmeasurement errors,

one would expecttheensembleaverageof the angularerrorto be zero;however,as can be seenin Figs.

1 and 3, thisis not the case.This discrepancystems from the factthat the displayederroris

not linearlyrelatedto the averagedmatrices.Also,the errorsin the computed matrices,A I and A 2,

arenotreallyindependent.
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6O

Finally, the vectors v i and v2, which are the components of the two abstract vector resolved in the

reference coordinates, were constant through all runs. The angle between the two vectors was close to
90. To investigate the behavior of the algorithm for a different separation angle, we chose two new v l

o

and v2 vectors the angle between which was close to 45 and ran the last test case. The results were

similar to those presented in Figs. 3 and 4, only that, as expected, the errors of all three algorithms

were nearly 25% higher.
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V. CONCLUSIONS

In thiswork we have presenteda simple TRIAD-based algorithm,which we call Optimized TRIAD, that

performs bettorthan TRIAD itself.The algorithm consistsof tuning TRIAD twice,once with one vector

as anchor and once with the other vector as anchor, and weight averaging of the two resultantmatrices

followed by one orthogonalizationcycle.The weights are determined by the accuracy of the measuring

devices that produced the vector measurements. The idea behind this algorithm is borrowed from linear

estimationtheory of independent unbiased measurement errors.However, although the blending of the two

TRIAD-generated matricesisbased on an unbiased minimum varianceformula,the ensemble average of the

angular error is not zero, as can be sccn in Figs. I and 3. This, however, is no surprise,because the

displayed error is not linearlyrelatedto the averaged matrices. Also, the errors in the computed

matrices,A 1 and A2, are not reallyindependent.

We have shown empiricallythat,indeed, the accuracy of the Optimized TRIAD is betterthan that of

TRIAD even when the latteruses the vector measured most accuratelyas anchor. It should be noted

though that in this statement we refer to the average performance. That is to say that occationally

TRIAD may yieldresultswhich are betterthan thoseobtained using Optimized TRIAD, but on the average,

Optimal TRIAD pcrforms better.It is interestingto note that like in Kalman filtering,the correct

blending of the betterTRIAD-generated atlitudematrix with the worse, yields,on the average, a result
which ismore accuratethan the better.

Appendix

Theorem: Givcn Yl and Y2 where:

and

yl= x + vI (l.a)

y2ffix + v2 (l.b)

E{v l} = 0 (2.a) E{v 2} = 0 (2.c)

E{v_ }=°21 (2.b) E{v22}=OI (2.d)

Then, the followinglinearestimator:

2
0

^ 2
x- 2------i yl +

o 1 + o 2

yieldsan unbiased minimum varianceestimateof x.

2
0
I.

2 2 Y2

01 + 02

E{VlV 2} = 0 (2.e)

(3)

Proof:

A lincarestimatorof x has the form:

Substitution of (1) into (4) yields:

A

x = klYl+ k2Y2

A

x = (kl+ k2)x + klVl+ k2v 2

(4)

(5)
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Using (5) we can write the estimation error as roUes:

A ^
• = x- x = (I -k l-k2)x-klv l-k2v 2

Due to the unbiasedness of v I and v 2 expressed in (2.a_), we obtain from (6):

(6)

For the estimate

unbiasedness:

E{e} = (I - kl- k2)x

to be unbiased, E{e} has to vanish, which yields

kl= I - k2

the necessary

(_)

condition for

(8)

Using (8), (4) becomes:

A

x = (1 - k2)Yl + k2Y 2
(9)

and (6) becomes:

• =- klV1- k2v2
(10)

Now

Vat{e} = 0 2 A__EIe2 . E{e}2}
¢

which in view of the unbiasedness of e becomes:

(II)

0 2 = s{e 2} (12)

Substitution of (10) into (12) yields:

2 2 2 2 2 (13)
o = E{klV l + k2v2 + 2klk2VtV2}e

Using (2.b,d,e) and (8), (13) becomes:

2 22 22

O = (1 - k2) O 1 + k202 (14)e

We want the estimator to be of minimum variance. From (14) we see that we still h_ve one more design

parameter to choose; namely k2. Consequently, we choose k2 so as to minimize o.e Searching for the

minimum we differentiate (14) with respect to k2 and equate the result to zero. This yields:

Consequently:

dd._ke2) 2 2k 2 0 (15)o = -2(1 - k2)o I + 2o2 =
2

2
O

k = 1 (16.a)
2 2 2

01 + 0 2

It can be easily verified that the stationary point which 0 2 has at this k2, is a minimum point. Using
o

(16.a) in (8), we obtain:
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k

1

2
o 2

2 2
O I + 0 2

(16.b)

Substitution of (16) into (4) yields:

2 2
u 0

A 2 1
X-- 2 2 Yl + 2-----'---_ Y2

G1 + O2 Ol + o 2

(17)

Q.E.D.
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